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Periodic assemblies of in-tandem pairs of metallic nanodisks separated by a dielectric spacer, so-called metal-
dielectric-metal nanosandwiches, constitute a novel class of photonic metamaterials with intriguing optical 
properties. When two metallic nanodisks are brought into strong coupling in a sandwich-like configuration, 
plasmon hybridization results into a symmetric resonant mode, with the dipole moments of the nanodisks 
oscillating in phase, and an antisymmetric resonant mode, with the dipole moments oscillating with opposite 
phase. While the symmetric resonance has an electric dipolar character, the antisymmetric one is associated with 
a loop-like current in the nanodisk pair and thus a dipole magnetic moment [1]. Two- and three-dimensional 
structures of such photonic metamolecules may exhibit a negative effective permeability in the region of the 
antisymmetric resonance, at visible and near-infrared frequencies [2], which is an essential ingredient in the 
design of negative-index metamaterials. Compared to pairs of rods or of cut-wires, the optical behavior of disk 
pairs is more isotropic because the latter are invariant under rotation about their axis. It is worthnoting that, 
contrary to the formation of bonding and antibonding electron orbitals in diatomic molecules, in a metal-
dielectric-metal nanosandwich, the low-frequency 
hybrid plasmonic mode is antisymmetric and the 
high-frequency one is symmetric. This apparently 
counter-intuitive situation can be understood as 
follows. Charge oscillations associated with an 
electric-dipole plasmon mode in a single metallic 
nanodisk are sustained by restoring forces acting 
on the collectively displaced conduction-band 
electrons. In an in-tandem pair of such nanodisks, 
charge distribution leads to reduction of the 
appearing restoring forces in the configuration of 
the antisymmetric mode and enhancement in the 
case of the symmetric mode. Consequently, the 
eigenfrequency of the antisymmetric mode is 
lowered and that of the symmetric mode is raised, 
as shown schematically in Fig. 1. The situation is 
reversed if the two nanodisks are on the same plane. 

In the present communication, we report on the effective magnetic permeability of two- and three-
dimensional periodic structures of metal-dielectric-metal nanosandwiches by means of full electrodynamic 
calculations using the extended layer-multiple-scattering method [3]. This method provides a versatile and 
efficient computational framework for fast and accurate calculations of the optical properties of complex 
inhomogeneous systems consisting of successive, possibly different, layers of scatterers arranged with the same 
two-dimensional periodicity. The properties of the individual scatterers enter only through the corresponding T  
matrix which, for scatterers of arbitrary shape, is calculated numerically by the extended boundary condition 
method. At a first step, in-plane multiple scattering is evaluated in a spherical-wave basis with the help of proper 
propagator functions. Subsequently, interlayer scattering is calculated in a plane-wave basis through appropriate 
transmission and reflection matrices. The scattering S  matrix of a multilayer slab, which transforms the incident 
into the outgoing wave field, is obtained by combining the transmission and reflection matrices of the component 
layers. For a three-dimensional crystal consisting of an infinite periodic sequence of layers, Bloch theorem leads 
to an eigenvalue equation that gives the (complex) normal component of the Bloch wave vector, zk , for given 
frequency, ω , and in-plane reduced wave vector component, ||k , which are (real) conserved quantities in the 
scattering process. The effective electromagnetic parameters of the structure, i.e., the permittivity and 
permeability functions of an equivalent homogeneous medium, are determined from the scattered field in the far 
zone by a finite slab of the structure, under plane wave illumination. At normal incidence, inverting the standard 
Fresnel equations, we obtain closed-form solutions for the effective refractive index, effn , and impedance, effz , 

Fig.1. A schematic description of plasmon hybridization in a 
metal-dielectric-metal nanosandwich. 



in terms of the complex transmission and reflection coefficients ( S -matrix retrieval) [2]. As the thickness of the 
slab increases, effn  should converge to ωzck  ( c  is the velocity of light in vacuum), which is unambiguously 
deduced from the complex photonic band structure of the corresponding infinite crystal. The effective 
permittivity and permeability of the slab are given by effeffeff zn=ε  and effeffeff zn=μ . Obviously, effε  and effμ  
do not describe the wave field inside the actual structure where, at a given frequency, it has the form of a Bloch 
wave rather than a simple plane wave. However, the effective parameters must be such that these two waves 
obey the same dispersion relation and, therefore have the same group (and phase) velocity. This remark is of 
course meaningful only if there is a single 
dominant relevant Bloch mode at the given 
frequency. Moreover, in order for an effective-
medium description to be applicable, the 
wavelength in the embedding medium must be 
much larger than the in-plane period of the 
structure. This condition ensures that there is only 
a single propagating mode of the scattered 
electromagnetic field corresponding to outgoing 
waves (refracted and reflected beams). All other 
components of the wave field (diffracted beams) 
are evanescent. 

We consider layered structures of metal-
dielectric-metal nanosandwiches. In each layer, 
the nanosandwiches are arranged on a hexagonal 
lattice determined by the primitive vectors 

)0,0,1(01 a=a  and )0,23,21(02 a=a . We 
assume that the permittivity of the metallic 
material is described by the Drude dielectric 
function, )(1 2

pm γωωωε i+−= , where pω  is the 
bulk plasma frequency and γ  a damping factor that accounts for dissipative losses. The nanosandwiches consist 
of two metallic nanodisks, of radius p5.2 ωcS =  and thickness p31 ωchh == , separated by a silica spacer 
( 13.2silica =ε ) of thickness p2 2 ωch = . Therefore, p321 4 ωchhhh =++=  is the total thickness of the 

nanosandwich. The stacking sequence is defined by ),63,2( 003 haa=a . We take p0 10 ωca = . In Fig. 2 we 
display the retrieved effμ , for slabs one-, two- and eight-layers thick, which clearly converges with increasing 
slab thickness and exhibits a resonant behavior about the frequency of the antisymmetric plasmon modes. It can 
be seen that, even assuming that the building units of the structure are non-absorptive with purely real 
permittivities and permeabilities, the S -matrix retrieval method leads to non-zero imaginary part for effμ  (and 
also for effε that we don’t show here) in the frequency region of the resonance. However, the retrieval procedure 
itself ensures that the values of effε  and effμ  are such that the absorption of each effective slab vanishes at any 
frequency. In some sense, it is not possible that the effective slab complies with the strong restriction to 
reproduce exactly the transmission and reflection coefficients of the actual metamaterial slab, with real functions 

)(eff ωε  and )(eff ωμ  in the resonance region. To make this possible, one has to assume complex functions with 
negative effImε  and positive effImμ , i.e., some fictitious dielectric gain, which counterbalances the fictitious 
magnetic losses. Obviously, this occurs for given slab thickness, specific characteristics of the incident field, etc. 
and, therefore, effε  and effμ  have not the meaning of inherent material parameters [4]. If absorptive losses in the 
metallic material are taken into account, the resonance structures become smoother and more extended in 
frequency while the region of negative permeability shrinks and almost disappears, as shown in Fig. 2. 
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Fig. 2. Effective permeability of one- (dotted lines), two- 
(dashed lines) and eight- (solid lines) layers thick slabs of the 
structure under consideration, at normal incidence. Left: 
Without losses ( 0=γ ). Right: With losses ( p025.0 ωγ = ).  


